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ABSTRACT

The translational and rotational motions of two prolate spheroids

sedimenting in a viscous fluid have been determined by the method of

reflections. No restrictions are imposed on the spheroid orientations or

relative sizes. As is the case in many mobility problems, the method

converged rapidly for all but almost touching configurations. The results

. extend earlier work on special cases such as Wakiya's work on horizontal

orientations and agree with Gluckman et. al. and Liao and Krueger's boundary

collocation solution of axisymmetric problems. Analysis of sedimentation with

inclined axes and mirror symmetric geometry reveal both periodic and single-...

S"encounter particle trajectories. The calculation of the separatrix between

the two behaviors required the use of the higher reflections introduced in

this work.

AMS (MOS) Subject Classifications: 76D05, 35Q10
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SIGNIFICANCE AND EXPLANATION .:"-

The calculation of hydrodynamic interactions between particles is needed - 4
for the understanding and control of many natural and manufacturing processes, ..-

* for instance, those involving sedimentation, colloidal stability or suspension

rheology. in these applications, the external forces, torques and the ambient

velocities are known a priori and the problem is to calculate the resulting

translational and rotational motions. In practice, since the governing

differential equations require knowledge of these motions for the boundary

* condition, one has to solve first for the forces, torques and dipole moments

in a collection of translational and rotational problems and then invert them

to obtain the desired motions.

The purpose of this report is to show that these problems can be solved

directly. Explicit calculations and comparisons with other techniques are

shown for the sedimentation of two spheroids in a viscous fluid. Deviations

from the settling behavior of spherical particles, such as particle drift, are

highlighted.
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8DIINATO U OF TWO ARBITRARZLY ORXIZWTD
ISPfIOIDS IN A VISCOUS FLUID

Sangtae Kim

1. INTRODUCTION

Suspensions of prolate spheroids have played an important role in the

theoretical development of suspension rheology. Such suspensions

exhibit non-Newtonian behavior through the interaction between the flow

field and Brownian motion (Oiesekus 1962, Brenner 1972, Hinch and Leal .

1972. However, rigorous derivation of the material functions to date

have been restricted to the dilute limit, partly because of the lack of

information on multi-particle hydrodynamic interactions. Existing

information on particle-particle interactions is limited to certain

geometries at large particle-particle separations (Wakiya 1965) or

special configurations (Gluckman et. al. 1971; Liao and Krueger 1980).

(This report Continues the work in (KIM 1984), NRC Technical Summry Report

#2643.)

New results are presented here which describe the interactions

between two spheroids with arbitrary configurations and all but

almost-touching separations. Explicit examples are worked out to

illustrate phenomena, such as the evolution of particle geometry, which

are not found in the corresponding problem for spheres. The

computational technique which is based on the method of reflectlons

(Happel and Brenner 1965, Felderhof 1977), was found to converge rapidly

for the sedimentation and related mobility problems. The improved

sponsored by the United States Army under Contract No. DAAG29-0-C-0041.
Partially supported by grants fram the AmOCO Foundation and the lbhu and mas

Company.
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results for the mobility functions were essential in accurate

calculation of particle trajectories, especially in the near-field

Interactions.

In Section 2, the techniques for calculating hydrodynamic

interactions which were developed in an earlier note (Kim 1984) are used

to recover Wakliya's (1965) results for the resistance problem. In

Section 3, sedimentation and angular velocities are calculated to O(R-7)

-8and O(R ) respectively, where R is the center to center separation

between the spheroids. An advantage of the present method is that it

bypasses the usual procedure of calculation and inversion of the

resistance problem. As outlined in Kim (1983), the sedimentation

problem is solved directly, without solving a collection of subsidiary

problems on translating and rotating spheroids. Problems solved include

sedimentation along and perpendicular to the line of centers and the

evolution of configurations for spheroids with inclined axes.

2. HYDRODYNAMIC INTERACTION BETWEEN TWO STATIONARY SPHEROIDS

In this section, the method will be used to recover Wakiya's (1965)

calculations for the drag on a spheroid. Figure 1 shows the geometry

used by Wakiya (1965). In order to simplify the final expressions, he

restricted his analysis to two identical spheroids with both axes placed

horizontally (with gravity acting in the negative z direction). The 0

drag and torque on spheroid 1 was calculated for the case where both

spheroids were translating (without rotating) in the negative x

direction in a quiescent fluid. -

In the terminology of the general literature, this is called a

* resistance problem. The translational and rotational velocities are

specified and the drag and torques are to be found. The mobility

"' -2-



problems pose the inverse question, i.e., forces and torques on the

particle are specified and the translational and rotational motions are

to be determined. The latter problem occurs more frequently in the 0

modeling efforts of diverse fields. Sedimentation and diffusion

problems in suspension rheology and hydrodynamic interactions in the

Rouse-Zimm theory all require the solution of a mobility problem. 
..

Specific applications can be found in the following samples from an

extensive list: Glendinning and Russel (1982), Batchelor (1976), and

Bird, Hassager, Armstrong and Curtiss (1977).

!X,XI X2  p..

X 2

O ........ . ......- .,.

~R

• .° • "* .' +
. ° o+ .

00

l-9

FIGURE 1. Wakya's geometry for two horzontally-ori'ented spherords. •:...
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The sedimentation problem (a mobility problem) and the problem of

calculating the drag on stationary objects (a resistance problem) are

reciprocals of each other up to O(R" 3). This simple situation does not

hold at higher orders because torques are present in the resistance but

absent In the sedimentation problem. Torques, if present, contribute

terms of O(R - ) in the drag. Therefore, Waklya's (1965) analysis of the

drag to O(R 2 ) also gives the sedimentation velocity to at least that

order.

Waklya's problem Is equivalent to that of two stationary spheroids

In a uniform stream with the stream flowing In the positive x direction -,

(Figure 1). We start by deriving the method of reflections solution to

Wakiya'a resistance problem, but without any simplifications regarding

relative sizes, or spheroid orientations In the unifrom stream U'. As

In Wakiya's ork, the analysis In this section will be arried out to

two reflections so that the drag will be accurate to O(R-2). The

orientation vector, position along the axis, eccentricity and the

distance from the centrold to the foci of each spheroid will be denoted

by d0, e5 and ca , a-1,2.

In an earlier note (Kim 1984) it was shown that the Chwang-Wu ......

(19711,1975) representation for the reflection from the uniform stream

and the contribution from this (zero-th) reflection to the drag on

spheroid 1 are:

1(3) -U - U".la'glg I +o(6-ddl

(2.1)

"0 1 0 V2 i-,)J
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(0) 11o(g,,(2.2)

I.

The Chwang-Wu constants a and Y depend only on the spheroid

eccentricities and are given In Table 1 and 3Is the Oseen tensor. The

analagous reflection field, Y2 from spheroid 2 can be obtained from

(2.1) by permuting the particle Indices. As shown In the ref ernes on

th- method of reflections, this implies that the contribution from the

first reflection Is

-- 161)101(619191 4 saWj 191))-

a01 2o 1  a02 A2  i .

((q-Elp (1-02) + (0 a kE)(e)y J 3cL-2)/e8wV) )2
1 1 (~e1) 2 2 (~*

It is apparent that the dependence on the orientation and shape of

spheroids 1 and 2 comes solely from the tensor

*2(-qj,) 01j i f_0 2 (1 4*

. ol-12 00 + s(0 -ca~) a aws) (2.4I)

L~cl~)(1e) 2 2(Je) 12

For the spherical case, this tensor Is known to polymer Iinticists as

the Rotne-Prager-Yaaaa tensor (Rotne and Prager 1969, Yamakawa 1970).

* It Is Interesting to note that Rotne and Prager obtained their tensor

using a variational approach. IN

-5-
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Tbe1. Constants for the velocity rpsnai for th spheroid
constats derived from Chvang and Wa (1974, 1975)

* 21-2e + (1+ 2) log(1I)J
a- I q m

22 -+e

Y (1-e){.V-) g(.)
73 3

e2--1

a3 2e y3 42W 1.

2) 1e2 -

2 - 2 -ee;
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The leading order term in the contribution from the second .

reflection#

- -6 1aZ2).(-6,lva 2 ZR)2,(-1

comes from the monopole approximation,

TR..

The drag on spheroid 1 is the su, of these contributions and

Wakiya's (1965) solution is recovered after the appropriate

simplifications In the geometry and notational changes. The

contribution from the first reflection to O(R 2) Is simply a . -

MlonOp le-monopol Interaction.

-2o oaidg., + 0,(g-dd))..(11-12).1(O) (-.6)i-

To convert this into Wakiya's expression, we need

."(x2-x1 .  . '" *.

a0 i6tic 2 guo 2  (2.6a)

(2.6b)
a U"Rsint, (2.6b)

a 0 (2.6a)
2 p

and a 0102a0", C1,* 2 0,"

Equation (2.6) can then be siuplifed to ._ '

-7- %.$
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-32wv(oa,)'U/R - 32wvosU'sin/R(@/ s§,d*d 1  o( . (  x 2 -W/l

(2.7) .

Therefore, the components of the drag In the direction or the uniform

stream, spheroid axis and the third orthogonal axis (or x1 ,y 2 ,z in

Valkiya's right handed coordinate system centered at x) are

:." -32wva( c,)2UO 1+snt)/R, (2.8a)

-32rj( cam) ( O)U oos8.1 sncos#/R (2.8b)

and 32wa(om,) "U'/sin,sln~oos /R. (2.8c

Since a and om equal Wakiya's R. and t, respectively, we recover his

O(R" ) term.

The O(R 2  terms come from the monopole-monopole Interactions In

the second reflection or

,dl~d 1.m,(j-d1 )). !(x- ', ,(-d2 -))' 1-x2).F.O -1

Some heavy algebra can be bypassed by noting that the leftmost tensor is

the one that determines the direction of the drag. The product of the
four factors to Its right simplifies to ,',-

16 aa:la l U"

- 9"

, -16 :pc 1 -",, - ."n,- ..-.".' .- " )/R
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and the xYS components reduce to the corresponding term in-

Wakiya' s (3.8). ;

The original expressions for the torque can also be recovered .via

the following contributions from the first and second reflections.

1 ..

8was'dx f .1 (cT-Cp)( (cI-I) V2) d-) (50d . "

0111 € .1 .,4

In the next section, the analogous expressions for the

sedimentation (mobility) problem are calculated to higher order. From

here on, we will not use the angles *z, *a and *. Instead, the

geometrical dependence will be represented by dot products between

and d

3. SEDIMENTATION OF TWO SPHEROIDS

3.1 General Procedure

The procedure for calculating the sedimentation velocities is a

straightforward generalization of that employed for spheres. The

essential modification is the distribution of the singularities along

the axes of the spheroids. The calculations will be performed up to and

including the second reflection so that the error In the translational
and rotational velocities will be O(R - ) and 0(R 8) respectively. .

The translational velocity of spheroid 1 is obtained by suning the -

contribution from the reflections.

-9-
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U1 U (3.1)

The zero-th reflection contributes

(0) O - - d 1.)'

The contribution from the first reflection Is

)1 2/ 11 0 (c -cI+) - 1 (3.3)

-1 12(11

with the incident field

-[f-2 0 (c1-C * )) ( Mx'j2)/C16o 2)d2 ,  (3.14)

This contribution can be simplified as follows:

-1 -2-c 1 2 -2 2

1 cAi1- ) 2 + €,[ ,(( q ".c '1
[ 1 2ci -c 2 20 2 1-2 2 te*, C -2+ j (m..;(1 ) c..a( e +( ..212 . ...

with - and -2

12 1 - 021) 1121.P ) 3.)"- "

The second reflection contributes

-("2 2  - 1  1 (c - es) va) .v (S )dJ19 (3.6)

-10- 2 1

.. . -- . -++ .+.o .o,+ -... . .+ •., -,. . .. . . . %, • . 5 . . . . . . . '. ,. . 5, - *= . . , .. ' .. , '. + . .

"+ ' ':- . * .- : ... ' ... - .. .... -, *.*. -. -. -.... ..+:,-....-, ,. ... . -,.,, . _, .5 . , ..... ,.. .. ... ,,,'. .,..,."
P ' .,'.. ,. ' +......o.,.... +.,.... + '.•-•%% ....5I % %%%% '. . * 5***''..,o.%',.% *.with . ,. . - , . . ; , ,, . ,,. ,, . , . . .,.., .

* ~ ;~:~~*::7 ~ **.-7



2 2

When we Insert (3.7) Into (36) nd use the expressions for the Stokes'..

dipole and octupole, (3.6) simplifies to

1- f 01 Al f_02 d (ca-C)
"1  1 2 2

2 2 - .eus0i d2 -1.

The etrsslet Is obtained via the Faxon law as (Kim 1984) !:li

"'.(1) 8  d.d 2Jd 41 1 , )dddkd

.- k21j d2i j ij 2k i kl

.- -(d216jkd2  * ld L 2k + itd2 id2  + Ikd 2j d2L 1d 2d2k d 2d
" 1 (6 6 a + 6 d d-'d"-"

d2 ..-. LL ]. .d-z

$- _2 (o A- 21 + (0 ] elC2()2)d2

2

2wUY (d21cjkd 2 "  d2jeik dL) 2_ 2 2 )x 1(12)kdg2
•  (3.9)

(1) (2) .The expression for U. 1 is exact since the exact v2 is used while U1 2-1
is accurate only to O(R-6 ) since only those leading terms were used in

-7(3.7). However, the leading error term, of O(R ),comes from the third

-. reflection which was neglected.
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The rotational velOCIty Of spheroid 1 also follows as a sum of the

contribution from each reflection.

(1) + (2)

V~~~ V 3-0

The first reflection contributes

(1) 3 .
Ld I01 10- 1)x j~g

.3 f a
TFR (2-el) (c -)1( -) 1 ~ ~ i~ 1* §x[22(11d (.1

Substitutions for v2 its rate-of-strain field e and the expression for

the rotlet eventually lead to -

1ic 1 2c 1 ~*
1 2 2

___~~a gC i. j f- 1 c2 %.2 (~~WWII 1 01 C2 2c2  1

S (C F q d -112

2 2(-p~8 i -1 c--9(i*:U2s ) 1 (3.12) 7

The second reflection contributes

1C - 1 Px,4

f~-c i (1-e*')+CIEZ -ddg (3.13)

*The leading order term in v1 2Is irrotational. Therefore, the 0(R )

term In the rotational Velocity comes solely from the second term in

(3.13). It should be noted that this ter, is absent for spheres, so for

*,*,*.~~~~ 
.p . .. .~ .* .* .. 

' 
.......

*..*. . . .

* - ~ *. .* ~ ~ . .~ . . . . . *... do



' ~2) "' -

spheres, -1 decays more rapidly, i.e., as O(R 7 ) (see Jeffrey and "..

Onishi (1984t)). Finally, (3.13) can be reduced to

I4. '4d 1 '0

" " t'T'"11 .j _°I02 (2 2 (cfG){

+ (a-) *- d x 12

Equations (3.2), (3.5), (3.8), (3.9), (3.12) and (3.111) allow w to
calculate the translational and rotational velocities for any sivtn

orientations of the spheroids. Special orientations are examined in the

following subsections*

3.2 Sedimentation of two vertically oriented spheroids along their line

of centers

The simplest geometry consists of two vertically oriented spheroids

falling along their line of centers as shown in Figure 2. The

orientation and separation between the spheroids remain invariant as can

7 be deduced from symmetry and the linearity of the Stokes equation. Thus

the analysis leads to a straightforward extension of Stimson and

Jeffecry's (1926) results for spheres. Therefore this problem merely

serves as a benchmark test for computational methods.

-13-
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R /

I-.r
FIGURE 2. Sedimentation of two identical. spheroids falling along their

line of centers.

The edientaionvelocity, nondimensionalized by the terminal

* . velocity for an Isolated, vertically oriented spheroid, is plotted in2

Figure 3 for three aspect ratio*. The solid line Is indistinguishable

frcm the spherical (Stimson-Jeffery) solution for R/a > 2.1. As the

aspect ratio increases, the hydrodynamic Interactions become weaker.

The contribution from reflections beyond those calculated by Wakiya

* become significant for R/a < 3. The results also agree with those

*obtained by Gluckman et. al. (1971) and Liao and Krueger (1980) as

shown in Table 2 of the appendix. Their I factor, the drag

nondimenslonalized by the Stokes drag of the sphere with the same

* cross-sectional area, has been successfully reproduced.

-14- '



FIGURE 3. Sedimentation velocity vs. center-to-center separation
for two spheroids as in Figure 2. Aspect ratio of
1.01, ---- ; aspect-ratio oif 2, ---- ; aspect ratio of
10,-----
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I~2 ... i

,i. R/o -

d1

Figure 4. Sedimentation of two horizontally and parallely oriented
spheroids.

3.3 Sedimentation of two horizontally oriented spheroids

The analysis of two spheres falling perpendicular to their line of

centers can be extended to the spheroidal case. However, to keep the

geometry invariant, the spheroid axes must be perpendicular to both

gravity and the line of centers. .

Figures 5 and 6 show the sedimentation and angular velocities for

the same aspect ratios as before. The terminal velocity of an Isolated,

horizontally oriented spheroid was used to scale both -U and -wya. In .,a
both figures the solid line is indistinguishable from the result for , ,

spheres (Goldman, Cox and Brenner 1966). The dependence on the aspect

ratio is qualitatively similar to that found In the previous subsection.

Finally, it should be noted that for the geometry considered in this _.

subsection, the O(R-5) term vanishes in equation (3.13) for the

rotational velocity.
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FIIRURE 5. Sedimentatton velocity vs. center-to-center separation
for two spheroids as in Figure 4. Aspect ratio of

1.01, ---- ; aspect ratio of 2, -- jaspect ratio of

E--.4
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FIGURE 6. Angular velocity vs. center-to-center separation for two
spheroids as ini Figure 2. Aspect ratio of 1.01,---
aspect ratio of 2, -- ;aspect ratio of 10,----
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3.4 Sedimentation or two Inclined spheroids

The results In the preceding subsections were qualitatively similar to

that found for spheres, and were mainly of interest as benchmarks for

the computational technique. In this section, we turn our attention to

a situation where the results differ qualitatively because of the

evolution of the particle geometry. Figure 7 shows two Inclined

spheroids settling with their axes lying in a common vertical plane.

Mirror symietry has been Introduced to reduce the number of parameters,

but the algorithm from Subsection 3.1 can handle more general

situations. At all times, the geometry is specified by the

dimensionless center-to-center separation, R/a and 6, the azimuthal

angle for .

~iD1L..I.E.~ K2 ~ 9*'7

Figure 7.* Mirror symmetry geometry of two inclined spheroids with their .

axes in a vertical plane %

•% % 
-=1
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The successive improvement obtained with each nov reflection Is

shown In Table 1 of the appendix. At all but small separations, or two

reflection solution provides accurate answers. For spheres the exact .

result is available (Goldman ot. al. 1966) and we see that even at

fairly small separations, the relative error is under 10% because of the h-..-.

small contributions from the neglected terms.

The evolution of the geometry is caused by the anisotropy in the

mobility tensors and the rotation of the spheroids about their

respective minor axes. Since the mobility is greater in the axial than

in the transverse direction, an Inclined spheroid drifts horizontally as .

It settles. At the same time, the spheroid rotation changes the ... .

orientation of the axis. These two effects, under the quasi-steady

assumption, are governed by the dimensionless equations (with R/a '

rewritten now as R)

6 - y(R,e0) (3.15) *'----

and

I " -2U x(R, ) (3.16)

Figures 8 and 9 show the evolution of R and 6 as determined by

Integrating (3.15) and (3.16) with a fourth order Runge-Kutta routine.

The plots include the curve

R - 2(1 - ecoee) 2 ,

L.
for contact between the two spheroids. Figures 10 and 11 show the

corresponding trajectories of the centroid of spheroid 2 in the x-z

plane. ...

-20-
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FIGURE 8. Evolution of orientation and separation for two spheroids,
r 10, falling as in Figure1
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FIGURE 9. Evolution of orientation and separation for two spheroids,
aspect ration =2, falling as in Figure 7.
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FIGURE 10. Trajectories for the centroid of spheroicl 2 corresponding 1
to the curves in Figure 8 (aspect ratio -10).
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FIGURE 11. Trajectories for the centroid of spheroid 2 corresponding

to the curves in Figure 9 (aspect ratio -2).
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If the orientation trajectories are followed from 6-0 (vertically

oriented spheroids) and all allowed values for R, the curves In Figures

8 and 9 fall into two groups, depending on the initial value of R. If R

exce.eds a critical value at 9-0, the particles eventually and

monotonically separate and the orientations approach asymptotically a-. *

limiting value for 6 which is less than v/2 because at large

separations, V goes to zero. However, for Initial values of R less than

the critical value, the rotational motion is sufficiently large to cause

the particles to rotate beyond the horizontal orientation. Thereafter,

the particles drift towards each other along trajectories which are

mirror Images of the outward trajectories. The separatrix which starts

at the critical value of R has the asymptote 0- r/2 (horizontal -

orientation).

The asymptotic behavior at large R can be obtained by using only ..

the leading term in w y and that In U .. Equations (3.15) and (3.16) can

then be integrated analytically. It is found that the trajectories

approach the limiting orientation 0 as

R - (1 - &s/a)(cos20 - oos2e9)/(4fta,). (3.17)

The influence of the aspect ratio is seen by comparing Figure 8

with 9 for aspect ratios of 10 and 2 respectively. For slender

particles, the periodic trajectories must squeeze through a very narrow

corridor at e-0. As the aspect ratio is reduced, this corridor widens

and the periodic trajectories become more like the straight vertical

lines of the spherical case.

The preceding analysis has shown that R(t) and 0(t) for the

particle geometry of this subsection are either periodic or represent

single encounters. Accurate calculation of the separatrix required the

higher reflections, particularly at large aspect ratios.
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APPENDIX % IN

The numerical convergence with each additional reflection is shown In
the following tables. 1he geometry is as in Figure 7 and the velocities ' ri

have been scaled with U , the sedimentation velocity of an isolated,
vertically oriented spheroid.

Table 1. Inclined Spheroids: Effect of Successive Reflections

Aspect Ratio - I and R/a - 3.0
m -

U 1/U Ul /U *.:

zero-th reflection 0.00000 1.00000 0.00000
with first reflection 0.00000 1.26852 0.08333
with second reflection 0.00000 1.26852 0.08333
exact solution 0.00000 1.26680 0.08178

Aspect Ratio - 2, 0 - 0 and R/a - 1.5
U"/U w 1ya/U"
Ulx/U Uiz/U " ly .

zero-th reflection 0.00000 1.00000 0.00000
with first reflection 0.00000 1.32692 0,12419
with second reflectian 0.00000 1.32886 0.12457

Aspect Ratio -2. - 0.'3 and R/a -2

U /U U /U i1 a/U
Ix lx ly N'.'

zero-th reflection 0.06033 0.91697 0.00000
with first reflection 0.06033 1.18429 0.13897
with second reflection 0.05296 1.18259 0.14073 -|m

Aspect Ratio - 10, 0 = 0 and R/a - 0.7

U U1 z l e1 ya/U

zero-th reflection 0.00000 1.00000 0.00000
with first reflection 0.00000 1.28195 0.07562
with second reflection 0.00000 1.28785 0.06962

Aspect Ratio - 10, 0 - 0.3w and R/a - 2

U 1z /U, U1zU ma to1 ya/U'

zero-th reflection 0.11531 0.80000 0.00000
with first reflection 0.111531 0.91759 0.06406
with second reflection 0.11238 0.91754 0.06416
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Table 2. Comparison with the boundary collcation solution or Gluckman -A 0

et. al. (1971) for axisyumetrio uniform streaming. I~ is the
spheroid~al drag divided by the drag on a sphere with the same
cross-sectional area.

Aspect ratio -2

R/a M~ethod of reflections Collocation

2 0.81185 0.84412
14 0.9811 0.9812
6 1.04158 1.0158

Aspect ratio -5

R/a M~ethod of reflections Collocation

2 1.3673 1.3700
11 1.5675 10.5675
6 1.6364 1.63641
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NOTATION

a mjor seami-axis of spheroid.

b minor semi-axis of spheroid.

c distance from center to foci.

d unit vector denoting orientation of spheroid axis.

* eccentricity of the spheroid.
e rate-of-strain tensor.

F force exerted on the particle by the fluid.

g gravitational vector.

T Oseen tensor.

• R center to center separation between to spheroids.

S stresslet or symmetric part of the stress-dipole.

T torque exerted on the particle by the fluid.

U particle translational velocity.......

v velocity.

position vector.

constants in the Chwang-Wu singularity solutions.

If constants in the Chwang-Wu singularity solutions.

identity tensor.

" alternating tensor.

angle defined in Figure 7.

V viscosity.

.vector denoting position on the spheroid axis.

a stress tensor.a

1 angles defined in Figure 1.

* angle defined in Figure 1.

particle angular velocity.

-28-
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A vorticity.

Subscripts

1,2 refers to spheroids at x, I..

ijaksLgm indices used in the Einstein summation convention.

* (n) denotes association with the n-tb reflection. I

ambient field.
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